Optimal Design and Distribution of Unit Cells

Introduction into Optimization for Programmable Mechanics

Dr. Alexander Leichner

Dr. Heiko Andrä
M.Sc. Tobias Lichti

Fraunhofer Institute for Industrial Mathematics (ITWM) Kaiserslautern

Overview

- Cluster Programmable Materials
- Motivation
- Focus on Programmable Mechanics
- Optimization Framework

Establishing data base for artificial material law

- Handling with Unit Cells
- Foil Unit Cell
- Simulation and Production
- Programming a Deformation
- Diverse Solutions
- Optimization Performance
- Conclusion and Outlook
- Summary
- Future Work

Cluster Programmable Materials - Motivation

- Combining strength and competences of many Fraunhofer institutes
- Summarizing them into a Cluster for parallel research

Cluster Programmable Materials - Focus on Programmable Mechanics

- Realization of exotic or unnatural material behavior
- Implementation of custom made mechanics for special purposes

Definition of Programmable Materials (PM) as a subset of Meta-Materials

PM are responsive functional materials whose mechanical properties (or shape) can be switched (or functionally changed) by an external trigger (stimulus). In contrast to mechatronic systems, this responsiveness is achieved solely by the complex internal structure of the material.

Cluster Programmable Materials - Focus on Programmable Mechanics

- Realization of exotic or unnatural material behavior
- Implementation of custom made mechanics for special purposes

Programmable Materials consist of Unit Cells

- In order to be regarded as homogeneous material:
- Unit cells must be sufficiently miniaturized \rightarrow Surrogate model as material law
$\square \quad$ Many unit cells must be arranged into arrays \rightarrow Adjoint approach for distribution of unit cells

Cluster Programmable Materials - Focus on Programmable Mechanics

- Examples for unit cells

Cluster Programmable Materials - Focus on Programmable Mechanics

- Examples for unit cells

Cluster Programmable Materials - Focus on Programmable Mechanics

- Foil produced in deep drawing process
\rightarrow cheap and robust
- Extension into 3D by stacking
- Different offsets allow implementation
- Application of surrogate material model in unit cell array
\rightarrow Establishing artificial material laws based on homogenization results

Optimization Framework - Establishing data base for artificial material law

Optimization Framework - Handling with Unit Cells

- Optimization with arbitrary periodic unit cells
- Homogenization with learning methods

Foil Unit Cell - Simulation and Production

- Example for optimization
- Unit cells made of foil
- Production deep drawing
- Parameter: Offset v

Stencil

Deformed foil

Computer model

Foil Unit Cell - Programming a Deformation

- Example for optimization
- Targets:
- Symmetric deformation
- Computation and target are matching

Foil Unit Cell - Programming a Deformation

Designvariable $v[\mathrm{~mm}]$

Foil Unit Cell - Diverse Solutions

- Example for optimization
- Targets:
- Asymmetric deformation
- Different solutions possible

Foil Unit Cell - Diverse Solutions

- Example for optimization
- Targets:
- Asymmetric deformation
- Different solutions possible

Foil Unit Cell - Diverse Solutions

Designvariable v [mm]

- Example for optimization
- Targets:
- Asymmetric deformation
- Different solutions possible

Foil Unit Cell - Optimization Performance

- Intermediate results during the optimization iterations
- Simultaneous comparison between
- Parameter distribution within geometry
- Difference between target and computed data

Distribution of design parameter

Comparison between target and computation at upper side

Conclusion and Outlook - Summary

- Status quo of the Fraunhofer Cluster with respect to optimization
- Interdisciplinary work of different institutes
- Definition of programmable materials as subset of meta materials
- Computational framework for manufacturing programmable materials
- Optimization method based on gradient descent iterations
- Using FEA software for solving the primal and dual problems
- Processing chain for custom designed unit cells
- Allowing arbitrary design of (periodic) unit cells
- Mapping its mechanical behavior into a database for differentiation

Conclusion and Outlook - Future Work

- Continue with
- large deformations \rightarrow Wave
- history dependency \rightarrow Honeycomb
- Combining different unit cells
\rightarrow Computational Vademecum
- Include manufacturing constrains
\rightarrow improving 3D printing
- Topology optimization of unit cells
\rightarrow bistable shapes
- Apply neural networks \& machine learning \rightarrow replacing tensor learning

Conclusion and Outlook - Future Work

- Continue with
- large deformations \rightarrow Wave
\square history dependency \rightarrow Honeycomb
- Combining different unit cells
\rightarrow Computational Vademecum
- Include manufacturing constrains \rightarrow improving 3D printing
- Topology optimization of unit cells \rightarrow bistable shapes
- Apply neural networks \& machine learning \rightarrow replacing tensor learning

For further information visit our website:
https://cpm.fraunhofer.de

Fraunhofer Cluster of Excellence Programmable Materials

